123 Street, NYC, US 0123456789 info@example.com

上海419论坛,上海龙凤419,爱上海 - Powered by Nanci Alec!

quiganxm

first_imgAstronomers have identified what’s possibly the tightest pair of stars ever seen: two white dwarfs swooping around each other every 5 minutes. If confirmed, the whirling dervishes are revolving twice as fast as the next closest pair. Moreover, the system could be the strongest known source of continual gravitational waves–eerie ripples in space-time that a planned orbiting observatory will chase.Many stars exist as binaries. If each partner is about as massive as the sun, they collapse when they run out of hydrogen fuel and become white dwarfs–dense Earth-sized remnants of their cores. Perhaps 100 million such pairs fleck our galaxy. Most take years to complete an orbit, but the closest together take mere hours or minutes. In the tightest of these pairs, astrophysicists believe, the more massive dwarf rips matter from its partner. When the gas crashes onto the dominant star, it emits x-rays.Such x-rays may stream from RX J0806.3+1527, a source spotted by the German satellite ROSAT in the 1990s. In 1999, astronomers realized its signal fluttered every 321 seconds. The x-rays vanished for half that time, as if their source were rotating into and out of view. Now, two independent teams have studied the system with optical telescopes. Gianluca Israel, of the Astronomical Observatory of Rome in Italy, and his colleagues used the European Southern Observatory’s Very Large Telescope array in Chile and other instruments to monitor a faint blue star that fluctuates with the same 321-second period in the same position. A team led by astronomer Gavin Ramsay of University College London also detected that cycle 2 months ago with the 2.5-meter Nordic Optical Telescope in the Canary Islands.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)A single star, such as a slowly spinning neutron star, cannot explain the x-ray and optical patterns, both teams maintain in reports scheduled to appear in Astronomy & Astrophysics and the Monthly Notices of the Royal Astronomical Society, respectively. Rather, they think the blue star and another white dwarf are locked in a sizzling tango about 80,000 kilometers apart–just one-fifth of the distance from Earth to the moon. X-rays from gas flowing onto the more massive dwarf strike its companion and make it glow blue.The dwarfs’ breakneck pace should whip the fabric of space like an eggbeater and churn out “easily detectable” gravitational waves, says astrophysicist E. Sterl Phinney of the California Institute of Technology in Pasadena. The Laser Interferometer Space Antenna, planned for launch within a decade, should detect these relatively nearby waves and “hear” thousands of similar systems, Phinney says.Related sitesItalian team’s research paperBritish team’s research paperLaser Interferometer Space Antennalast_img read more

jvtbbmru

first_imgHow can speakers of endangered languages protect their mother tongues from dying? And does modern technology help preserve disappearing speech? Science’s Kerry Klein speaks with Meg Noori and David Harrison about their attempts to protect endangered languages by integrating them into the digital age, part of a session on linguistics at the annual meeting of the American Association for the Advancement of Science (which publishes ScienceNOW). The two also participated in a live chat with Science’s John Travis earlier this afternoon.Full coverage of AAAS 2012 and more podcastsSign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)last_img read more

ivjkubtm

first_imgThe knight who said no. Annie Thébaud-Mony refused France’s top honor. A French public health researcher and advocate has refused to accept one of the highest honors bestowed by the French government to protest what she says is a lax attitude toward health hazards in the workplace. Annie Thébaud-Mony, a semiretired researcher at the French National Institute of Health and Medical Research (INSERM), says it would be “almost indecent” to accept the honor while there is “a very big indifference … to the death of workers and to environmental damage.”On 13 July, a day before France’s national holiday, the French government announced that Thébaud-Mony was to become a knight in the Légion d’Honneur. She had been nominated, along with 29 other French citizens, by housing minister Cécile Duflot. In a letter dated 31 July that she made public on Saturday, Thébaud-Mony thanked the minister but wrote that she would prefer to see Duflot “challenge the impunity that until now has protected those who carry out industrial crimes.”Thébaud-Mony has spent 3 decades investigating health hazards in the workplace—with a focus on cancers—and has studied related regulation, social inequalities, and patient support. She has also become a strong advocate; she co-founded Ban Asbestos France, for instance, and currently presides over the Henri Pézerat Association, which supports initiatives to reduce professional and environmental health risks.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)By refusing the award, Thébaud-Mony says she wants to alert the government to the fact that many French workers are still exposed to cancer-causing compounds. A 10-year survey she conducted among oncology and pulmonology patients in the region of Seine-Saint-Denis showed that “85% are heavily exposed to a cocktail of carcinogens without any protection,” she says. Among the most risky sectors are construction, car repair, metal, waste, maintenance, cleaning, and the nuclear industry. While regulations have been put in place, many of them in the 1990s, employers often don’t comply, she says.Thébaud-Mony says that researchers in her field have been lacking institutional support. She says she didn’t receive the personal recognition she was expecting from INSERM, which she believes passed her over for promotions in part because her work runs counter to industrial interests. “Even worse,” she wrote in her letter to Duflot, “several young and brilliant researchers who worked with me have seen the doors of the institutions close in front of them.” An INSERM spokesperson said no one at the institute was available to respond the past 2 days.In a statement issued on Monday, Duflot said that she had “profound respect for Thébaud-Mony’s determined and disinterested engagement,” and said that her reasons to refuse the medal were exactly the ones for which she deserved it. Duflot also said she would extend an invitation to talk in September. “My only wish is that our combined actions, and the publicity they are receiving, contribute to making your fight more than a summer topic,” the minister added. Annie Thébaud-Mony last_img read more

tzxidfjj

first_imgCalm before the storm. This high-frequency radar instrument is part of a 28-site network along the U.S. Atlantic coast that was hit hard by Sandy. U.S. coastal scientists are reporting that superstorm Sandy knocked out more than one-half of a high-frequency radar network that measures shifting Atlantic Ocean currents just offshore. The 28-site radar network stretches 1200 kilometers from Cape Hatteras, North Carolina, to Cape Cod, Massachusetts. But only 11 sites were still transmitting data after the storm made landfall on Monday night, according to physical oceanographer Scott Glenn of the Institute of Marine and Coastal Sciences at Rutgers University in New Brunswick, New Jersey. The network, run by a coalition of universities and U.S. government agencies, began operating in the late 1990s and is now part of one of the most comprehensive coastal monitoring systems in the world. It’s not clear how many of the 17 silent sites were destroyed by high winds and floodwaters, Glenn says, and how many stopped communicating but continued to collect data. But he’s prepared for the worst: “We’ve seen some pictures of where our radar sites should be, and there is nothing but sand.” Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*) However, there’s also a silver lining. Glenn says the radars did “great work” before succumbing, providing an unprecedented look at how Sandy scrambled offshore currents as it blasted ashore. Such information should be useful for improving computer models used to forecast storm impacts in coastal areas. See the 9 November issue of Science for more details on Sandy’s impact on science. Rutgers University/Institute of Marine and Coastal Studies last_img read more

wvehpdnk

first_imgIndia is a shining example of a melting pot to the whole world because (we) have always been home to people who have faced religious and political persecution. Related Itemslast_img

qzpmfcti

first_imgGoogle is testing the feature with random users and would make an official announcement in the coming days. Related Itemslast_img

diakrkts

first_imgRahul Gandhi probably has more nicknames to his credit than Sushilkumar Shinde has had blonde moments in his political career. Related Itemslast_img

fjnahbfq

first_imgthe Indian people have become increasingly interested in learning Chinese in recent years, thanks to booming bilateral trade and exchanges. Related Itemslast_img

qzpmfcti

first_imgBoth the public and private sectors have underestimated the human imperative to behave socially. Related Itemslast_img

skepnbjl

first_imgFour Indian teachers have been kidnapped in Libya, India’s foreign ministry has said. Related Itemslast_img

rsgqllsv

first_imgSome galaxies are so distant that they appear only as featureless points of light to observers on Earth. But thanks to another closer galaxy acting as a magnifying lens, astronomers have been able to see star-forming regions in one such distant galaxy—known as SDP.81—dating to 2.4 billion years after the big bang. This is the most detailed image obtained of a galaxy that far back in the universe’s history. Directly in line between SDP.81 and Earth is another galaxy, the gravity of which bent the light from SDP.81 in a way similar to how a lens magnifies objects. Viewed from Earth, the magnified galaxy appears as a circle, known as an Einstein ring. But using data from the Atacama Large Millimeter/submillimeter Array (ALMA) recorded late last year, seven groups of astronomers have reconstructed a true image of SDP.81, which, although hazy, looks much more like a galaxy. Their work was helped by ALMA’s exceptional resolution. The array is made up of 66 radio telescope dishes high on a plateau in the Atacama Desert of northern Chile. ALMA combines signals from all the dishes to see much finer details, and for these observations the movable dishes were spaced out to their maximum extent—some 15 kilometers—to achieve a resolution six times better than the Hubble Space Telescope can see in infrared light. In eight papers posted online on the arXiv preprint server, the astronomers describe how they were able to estimate SDP.81’s mass, measure its rotation, and see clumps of gas collapsing inwards. Most notably, they could see large dusty clouds thought to contain cold molecular gas, just the sort of place where stars and planets are born—akin to the Orion Nebula in our Milky Way galaxy.last_img read more

fjnahbfq

first_imgSeabirds may have unknowing allies in their hunt for fish. Several years ago, a Japanese seabird specialist now studying the effects of climate change on life in Alaska’s Bering Sea noticed that some birds seemed to target clusters of jellyfish. Last summer, he went back to Alaska and outfitted eight thick-billed murres (Uria lomvia), 45-centimeter-long black and white birds that nest on island cliffs, with the avian equivalent of a GoPro camera and a device that tracked their movements. Half of the resulting videos documented underwater excursions, which included 197 feeding events. In 85% of the birds’ U-shaped dives, they encountered the jellyfish Chrysaora melanaster (pictured above), a common species in that area, on their way back up. About one-fifth of the time, the birds altered their ascent to go after young fish hiding among the jellyfish, the seabird specialist and his colleagues report online in Biology Letters. The more fish hiding under the jellyfish, the more likely the birds were to attack, they note. In recent years, it seems that the number of jellyfish have been on the rise, fueling concerns that their voracious appetites for microscopic sea creatures might have a negative impact on the food web and that their density might alter how fish behave—young fish seek refuge among the jellies’ tentacles, for example—and consequently hamper the ability of predators to catch these fish. But this study shows the opposite can be true as well, with jellyfish creating more opportunities for sea birds. Next, the researchers plan to study murres in years when jellyfish numbers are down.last_img read more

osrwtvum

first_imgIf you’re a plant, there are only two places you can go to escape a warming world: toward the poles, or up a mountain. But because you can’t move, you need to rely on animals to get you—or more accurately, your seeds—there. And what if they aren’t going your way? In a new study, scientists looked at a specific example: a species of Japanese cherry tree (Prunus verecunda) that needs mammals to spread its seeds. Asian black bears (Ursus thibetanus, pictured) eat most of the cherries, and the researchers could determine where the bears—um—deposited the seeds by measuring the seeds’ levels of a variety of types of oxygen, which change with altitude. The bears moved the seeds an average of about 300 meters up in altitude, the team reports today in Current Biology, likely because the timing of cherry fruiting coincides with the bears’ springtime trek up the mountains to follow fruiting plants. That’s a 2°C temperature drop, meaning cherry trees will likely be able to keep up with climate change thanks to the behaviors of their seed-spreaders. Other plants may not be so lucky.last_img read more

ivjkubtm

first_imgOn 14 April, a magnitude-6.2 earthquake struck the Japanese island of Kyushu. Two days later, Japanese officials reported towering plumes of smoke at Mount Aso, a volcano 42 kilometers away from the quake’s epicenter. A small eruption was occurring. Could the distant earthquake have triggered it? Mount Aso has had far bigger eruptions over the past few years, well before the earthquake occurred, so it was probably just a coincidence. But a new study concludes that the idea of so-called far-field triggering is not so far-fetched. Big earthquakes can slosh around the bubbly magma underneath volcanoes hundreds of kilometers away, researchers have found, releasing gases that can increase magma pressure and even lead to an eruption.In a very general sense, earthquakes and volcanic eruptions tend to be clumped in space and time anyway, because both often occur along the grinding boundaries of tectonic plates in Earth’s crust. Most individual volcanic eruptions are also preceded by tiny tremors, directly underneath, that are associated with the actual movement of magma in underground chambers—an eruption early warning signal that has been monitored effectively by geoscientists.But scientists have long wondered why big earthquakes are sometimes followed by small volcanic eruptions far from the quake’s epicenter. Even Charles Darwin mused about the connection in 1835, wondering whether Chile’s great Concepción earthquake—which devastated the town of the same name—could have been linked to the eruption of the volcano Osorno he observed only a month later.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)More recently, the massive 1991 eruption of Mount Pinatubo in the Philippines was suggestively preceded by a magnitude-7.7 earthquake centered 100 kilometers away the previous year. A 2009 study, by volcanologist David Pyle and his colleagues at the University of Oxford in the United Kingdom, found that eruption rates of volcanoes in Chile significantly increased in the 12 months following any earthquakes of magnitude 8 or above.Scientists have put forward plenty of explanations for a possible link between earthquakes and volcanoes. These include the idea that shockwaves from the quakes can cause mushy semisolid magmas to liquefy into something more likely to erupt, or even that earthquakes can accelerate the growth of bubbles in magma, which can increase magma pressures. But no one has quite managed to explain why only some volcanoes seem affected by earthquakes, why their responses can take anywhere from days to months, and why the events can vary from tiny bursts of gas to full-blown eruptions.“Prior models were able to explain some elements, but not others,” Pyle says. He explains that over time, volcanologists have developed a consensus that the potential for a connection between quakes and eruptions is likely determined by the state of the volcano before the earthquake, along with the presence of bubbly magma.Volcanologists have now proposed a new trigger mechanism: the sloshing of this bubbly magma. Sloshing—the movement of a surface of liquid—is a well-studied issue in engineering. Trucks carrying liquids (such as petroleum) must have specially designed tanks to withstand the sloshing fluid inside. Fractures and roof collapse can sometimes occur in static petroleum storage tanks after the ground motion from earthquakes moves the liquids inside. Inspired by these observations, volcanologist Atsuko Namiki of Hiroshima University in Japan and colleagues wondered what kind of effect earthquakes might have on a different contained liquid—volcanic magma.To find out, the researchers simulated the effect of earthquake shockwaves on a magma chamber in their laboratory, using a rectangular tank attached to a shaking table. In the place of magma, they used a thick glucose syrup, adding in irregularly shaped bits of plastic to simulate suspended crystals of rock that precipitate out of the magma. To slosh, a liquid must not have too many crystals, however. It must also have a surface and space to move—therefore sloshing can occur in partly-filled containers—like molten rock in an open volcanic conduit leading to the surface. In magma chambers that are full, however, sloshing may also occur between liquids of different densities, with the lighter liquid giving the other room to move. Such liquid layering is believed to be common in magma chambers, where foamlike bubbly magma overlies denser magma. Accordingly, the team tested the sloshing response of three different “magma” configurations: an open, single-liquid layer; an open, single-foam layer; and a closed, two-layer system where foam overlaid liquid.For each setup, the researchers conducted a variety of tests. They filmed each tank shaking for 10 seconds under different shaking frequencies and amplitudes, with syrup “magmas” of different viscosities, volumes, crystal contents, and bubble fractions.Although fluid sloshing in a magma reservoir would not be powerful enough to overcome the strength of the surrounding rocks, the team found a different effect at play. A large increase in sloshing occurred when the shaking of the tank neared the liquid’s resonant frequency—the frequency at which it is easiest to get an object to vibrate. In the foam layers, this deformed the bubbles, smearing them together until they became interconnected—causing the foam to collapse. Thin foams with larger bubbles were more susceptible to collapse. In a real volcano, the escape of hot gases from collapsed foamy magma in a closed reservoir could increase heat transfer to the surrounding rock, increase magma pressure, and even trigger an eruption, the team says.Furthermore, in the double-layered experimental setup, not only did the foam layer collapse, but the remnant foam mixed with the underlying liquid layer. In a real volcano, such mixing would furnish the lower magma layer with extra crystals and small bubbles, providing new sites at which more gases could then bubble out of the magma. Over time, this would slowly drive up magma pressures, too, causing increased volcanic activity and potentially even a delayed eruption. That may explain how volcanoes could be triggered by earthquakes that happened months before, the team reports this month in the Journal of Volcanology and Geothermal Research.From their simulations, the researchers explored the earthquake conditions that would cause real magma to undergo foam collapse. They found that for volcanic vents wider than 0.5 meters, low frequency seismic waves would be required—which helps explain why only large earthquakes seem to be capable of triggering volcanic activity. Namiki says that for a typical magma in a 3-meter-wide volcanic tube, a magnitude-7.5 earthquake could cause sloshing-induced foam collapse from as far away as 100 kilometers. In addition to vents, the team proposes that the large (up to around a kilometer in width) spherical magma chambers found at intermediate depths under volcanoes should also be able to resonate with seismic waves, as long as the denser magma layer fills up to a sufficient level in the reservoir.The study is intriguing, not in the least for its bringing of engineering concepts from outside of geology to help understand how the earth works, says geophysicist David Hill of the U.S. Geological Survey in Menlo Park, California. Hill was not involved in the research, but his work includes a focus on the potential for remote triggering of volcanoes by earthquakes.The experimental work makes a compelling case, agrees Pyle, who was also not involved in the study. “This is an exciting hypothesis that will be testable,” he notes, explaining that volcanoes believed to be triggered by sloshing should erupt rocks containing chemical and textural evidence to show that they came from the mixing of a bubbly and a denser magma. “This offers a neat resolution to a complex problem.”last_img read more

zpsdmffj

first_imgNext week, the 2016 Nobel Prize in Physics will be announced, and many scientists expect it to honor the detection of ripples in space called gravitational waves, reported in February. If other prizes are a guide, the Nobel will go to the troika of physicists who 32 years ago conceived of LIGO, the duo of giant detectors responsible for the discovery: Rainer Weiss of the Massachusetts Institute of Technology (MIT) in Cambridge, and Ronald Drever and Kip Thorne of the California Institute of Technology (Caltech) in Pasadena. But some influential physicists, including previous Nobel laureates, say the prize, which can be split three ways at most, should include somebody else: Barry Barish.Barish, a particle physicist at Caltech, didn’t invent LIGO, the Laser Interferometer Gravitational-Wave Observatory. But he made it happen. The hardware at LIGO’s two observatories in Hanford, Washington, and Livingston, Louisiana; the structure of the collaboration; even the big-science character of gravitational wave research—all were molded by Barish, who is now 80. “Without him there would have been no discovery,” says Sheldon Glashow, a Nobel Prize–winning theorist at Boston University, who has written to some members of the Nobel Committee arguing the case for Barish. “It would be an enormous injustice” if he didn’t share in the Nobel, Glashow says.When Barish took over as the second director of LIGO in 1994, he inherited a project that was “dead in the water,” says Richard Isaacson, the National Science Foundation’s (NSF’s) program director for gravitational physics from 1973 to 2002. LIGO had hatched a decade earlier, when NSF began funding Weiss and Drever to marry their work on using interferometers—L-shaped assemblages of lasers and mirrors—to detect the stretching of space set off by, say, two massive black holes spiraling together. But with Weiss, Drever, and Thorne, a theorist, tripping over one another, the project remained larval. By 1987, NSF wanted a single director for the project, and Caltech appointed Rochus “Robbie” Vogt.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Decisive but volatile, Vogt pulled the team together to write a coherent proposal for twin interferometers with 4-kilometer-long arms. He won crucial support in Washington, D.C., says Stanley Whitcomb, a LIGO physicist at Caltech. “Robbie was very effective in conveying to members of Congress the excitement of LIGO’s science,” he says. In 1990, the National Science Board (NSB), which sets policy for NSF, approved construction of the observatory, priced at $250 million—the biggest thing NSF had ever attempted.But Vogt disdained bureaucratic oversight and vexed NSF officials. He kept the LIGO team unworkably small and refused to supply a detailed work plan or document researchers’ progress, Isaacson says. Things got so bad that in 1993 NSF asked Congress to hold back $43 million that the agency had requested for LIGO the following year. By the end of the year, Caltech eased Vogt out of leadership.I think there’s a bit of truth that LIGO wouldn’t be here if I didn’t do it, so I don’t think I’m undeserving.Barry Barish, California Institute of TechnologyBarish brought swift and sweeping changes. Lanky, soft-spoken, and even-tempered, he was born in Omaha, Nebraska, and raised in Los Angeles, California, where he attended public schools. He already had experience with big collaborations, having worked in a group of 140 physicists searching for particles called magnetic monopoles at Italy’s underground Gran Sasso National Laboratory. He had also worked on the biggest of big-science projects, the $10 billion Superconducting Super Collider in Waxahachie, Texas, which Congress canceled midconstruction in 1993.First off, Barish reorganized LIGO management, expanding the team and delegating authority. Within months, he developed the detailed work plan that NSF wanted. Whereas Vogt stressed unfettered innovation, Barish likened LIGO to building a bridge—one that would be very long, complicated, and expensive. He revised the project to improve infrastructure, such as the vacuum chambers that hold the interferometers. He also established permanent scientific staff at the two LIGO outposts and a steady R&D program for future upgrades. These changes required a budget boost to $292 million, Isaacson says, which NSB approved.Barish and his deputy, Caltech’s Gary Sanders, also shook up the culture of the collaboration. Caltech physicists had a prototype interferometer and relied on experienced individuals to restart it daily. Barish and Sanders prodded them to run it steadily 24 hours a day and to study it methodically, eliminating what Sanders calls the “guru mentality.” The factorylike approach galled many of LIGO’s leading lights, who felt devalued and quit.Meanwhile, Barish expanded LIGO beyond the bounds of Caltech and MIT. In 1997, he brought in new expertise by establishing the independent LIGO Scientific Collaboration (LSC), the group of external scientists who would use LIGO. “I don’t think we would have made the discovery in the time we did without that massive accumulation of intellect,” says David Berley, NSF’s project manager for LIGO from 1992 to 2000. Sanders says the decision to create LSC was initially unpopular among physicists who feared that big science was taking over their field. (It was.)Key technical aspects of the LIGO interferometers reflect Barish’s touch, too. He decided to change the lasers that pump light into the instruments from ones that squeeze light from argon gas to more powerful and reliable solid-state lasers, then just coming to market. He also pushed to switch from analog to digital controls.Construction of LIGO finished in 1999, and it began taking data 3 years later. Barish stepped down in 2005 to head up design of the International Linear Collider, a proposed 30-kilometer, straight-shot accelerator that some particle physicists say is the future of their field. But before giving up the reins, he ushered through plans for a crucial upgrade to the interferometers that ensured LIGO’s almost immediate success in detecting gravitational waves when the machines turned on a year ago. LIGO collaborators say Barish set a high standard for fairness and integrity. “I always felt appreciated and respected by him,” says Gabriela González of Louisiana State University, Baton Rouge, spokesperson for the 1100-member LSC.Ironically, Barish recently tarnished his own sterling reputation. In May, at a meeting in Pittsburgh, Pennsylvania, he began an after-dinner talk with a slide showing a man writing on a woman’s bare back and, next to her, a stage prop in the form of a cartoonish racial caricature. The incident ignited a Twitterstorm, and in a statement LSC disavowed the image as “inherently very offensive.” Barish says he found the photograph, from an early 20th century Broadway playbill, on the internet and was trying to make a play on the term “back story.” He says he hadn’t noticed the sexist and racist content. “I made a mistake, I should have been more careful,” he says.Barish apologized to the entire LIGO collaboration by email. But Elizabeth Simmons, a theorist from Michigan State University in East Lansing, says she questioned Barish about the image at the dinner and that he dismissed her objection, saying, “This [slide] is not my talk.” Tova Holmes, a graduate student at the University of California, Berkeley, who also attended the dinner, says, “Anybody who had ever thought about what it is like not to be a white man in physics would never have chosen that image.”Other prizes suggest Barish is a long shot for the Nobel. Several awards have already honored LIGO’s discovery, including the Gruber Cosmology Prize, the Kavli Prize in Astrophysics, the Shaw Prize in Astronomy, and the Special Breakthrough Prize in Fundamental Physics. All lauded Weiss, Drever, and Thorne, but not Barish.The situation highlights a problem for prizes: They favor ideas over execution. “There isn’t a way to recognize good management,” González says. Whitcomb says that the U.S. National Medal of Science, honoring science in service to the nation, would be “well, well deserved” for Barish.Of the Nobel, Barish says, “I think there’s a bit of truth that LIGO wouldn’t be here if I didn’t do it, so I don’t think I’m undeserving.” He’s hoping that the Nobel Committee takes the time to learn LIGO’s history. “If they wait a year and give it to these three guys, at least I’ll feel that they thought about it,” he says. “If they decide [to give it to them] this October, I’ll have more bad feelings because they won’t have done their homework.”For more coverage on gravitational waves visit our Gravitational Waves topic page.last_img read more

vxxyohxe

first_img GRAPHIC: C. BICKEL/SCIENCE 4 1. Atlantic trout7.85 kg17.532 km/hr 5. Cheetah65 kg120 km/hr Why midsized animals are the fastest on Earth 3 An elephant should run faster than a horse—at least in theory. That’s because big creatures have more of the type of muscle cells used for acceleration. Yet midsized animals are the fastest on Earth, a trend that researchers have long struggled to explain. Now, an analysis of nearly 500 species ranging from fruit flies to whales has an answer: The muscle cells in big animals run out of fuel before the creatures can reach their theoretical maximum speed. The work may also help scientists come up with estimates for the running speeds of certain dinosaurs.Previous studies of animal speed have focused only on certain groups of animals, such as mammals. But that premise often looks at creatures within a limited size range, says Myriam Hirt, a zoologist at the German Centre for Integrative Biodiversity Research in Leipzig. That approach may also hide underlying factors by focusing on animals that are closely related, she notes.To get around those limitations, Hirt and her colleagues looked at previously collected data for a wide variety of creatures, including ectotherms (so-called cold-blooded animals) as well as warm-blooded endotherms. The 474 species they considered included runners, swimmers, and flyers that ranged in mass from 30 micrograms to 100 metric tons.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)When the scientists mapped a creature’s top speed (either measured in the wild or in a lab setting) versus its mass, they got an inverted-U–shaped graph, with moderately sized animals on top, they report today in Nature Ecology and Evolution. On the largest scale, the trend doesn’t seem to be related to biomechanics, or how an animal’s body parts are arranged and how its joints function, among other factors, Hirt says. 1 Kenneth Geiger/National Geographic Creative 2 2. Humpback whale30,000 kg27 km/hr 3. Willow warbler0.0087 kg43.2 km/hr Heft versus hustleThe fastest animals on Earth—whether they run, swim, or fly—are midsized creatures, not the miniscule or the mighty. That trend is driven by metabolic constraints in muscle tissue, a new study suggests. Very large animals have more “fast twitch” muscle fibers needed during a sprint and can in theory accelerate for longer periods, but those tissues soon run out of oxygen and thus reach max performance long before supermassive creatures ever reach their theoretical maximum speed. 1e–07 0.0001 50 100 150 200 Top recorded speed (km/hr) 100,000 0.01 100 Mass (kg) A new study helps explain why midsized animals such as cheetahs are overall speed champs. 4. Human70 kg43.85 km/hr 5 Instead, it appears to be related to a much more fundamental metabolic constraint: the length of time required for the animal to reach its theoretical maximum speed, based on the number of “fast twitch” muscle fiber cells in the creature’s muscles, as compared to the length of time it takes for those cells to run out of readily available energy. (“Fast twitch” muscle fibers contract more quickly than “slow-twitch” fibers and generate more force more quickly, but they also fatigue more quickly.) According to the researchers’ notion, the “fast twitch” muscle fibers in immense creatures such as elephants and whales run out of cellular fuel long before they can reach max speed based on the overall number of such fibers.The study is also a good starting point for teasing out other factors that influence a creature’s maximum speed, says Christofer Clemente, an ecophysiologist at the University of the Sunshine Coast in Maroochydore, Australia, who wasn’t involved in the research. One such unexplained trend is that warm-blooded land animals are usually faster than cold-blooded creatures of comparable size, whereas at sea the reverse is usually true.“There’s been a big challenge in finding one overall notion of what constrains acceleration,” says John Hutchinson, an evolutionary biologist at the Royal Veterinary College in Hatfield, Hertfordshire in the United Kingdom. And although he terms the new study “bold,” the factors that limit maximum speed in small animals are likely very different than those limiting large ones, he suggests.Hirt and her colleagues suggest their technique should apply to long-extinct dinosaurs as well. For example, a 6-metric-ton Tyrannosaurus rex’s top speed may have been about 27 kilometers per hour (slightly more than an average human’s running speed but nowhere near Jamaican sprinter and world record holder Usain Bolt’s), they estimate. Yet that figure may be a very rough estimate, because the range of max running speeds for creatures of approximately the same weight can be broad, says Thomas R. Holtz Jr., a vertebrate paleontologist at the University of Maryland in College Park.Despite the overall conclusions of the study, within a narrow range of sizes, the way an animal is put together can indeed have a huge effect on a creature’s top running speed, Holtz notes. Humans and cheetahs are a case in point: Although the two humans included in the team’s study weighed in at 70 kilograms and had an average top speed of about 41 kilometers per hour, the heftiest cheetah weighed about 5 kilograms less but ran nearly three times as fast. By Sid PerkinsJul. 17, 2017 , 11:30 AM Heft versus hustle The fastest animals on Earth—whether they run, swim, or fly—are midsized creatures, not the miniscule or the mighty. That trend is driven by metabolic constraints in muscle tissue, a new study suggests. Very large animals have more “fast twitch” muscle fibers needed during a sprint and can in theory accelerate for longer periods, but those tissues soon run out of oxygen and thus reach max performance long before supermassive creatures ever reach their theoretical maximum speed.last_img read more

rodbgick

first_imgThe Cas9 enzyme, key to the CRISPR system, has a lot of fat that it can lose and still serve as a powerful tool. By Jon CohenAug. 30, 2018 , 8:00 AM CRISPR is too fat for many therapies, so scientists are putting the genome editor on a diet Meletios Verras/shutterstock.com COLD SPRING HARBOR, NEW YORK—The genome editor CRISPR has morphed over the past 6 years from an obscure bacterial immune mechanism into the rock star tool of biology, allowing researchers to alter DNA with greater precision and ease than ever before. But the most popular version of CRISPR is simply too big, which complicates reaching some targets—and limits the ability of this powerful technology to create new therapies. Now, researchers have devised a way to put CRISPR on a diet and still retain its core functions.Standard CRISPR methods have appropriated a DNA-snipping protein called SpCas9 from the Streptococcus pyogenes bacterium. Another CRISPR component guides the enzyme to targeted places on the genome. SpCas9 binds the DNA and its molecular scissors clip the double-stranded helix. But this lab darling, which has 1368 amino acids, is too chunky for many biomedical applications. So a team led by David Savage of the University of California, Berkeley, has devised a huge library of slimmer Cas9s using a “directed evolution” scheme.“This is an amazing story because it’s a reversal of the actual evolutionary process,” says Kira Makarova, a pioneering CRISPR researcher at the National Center for Biotechnology Information in Bethesda, Maryland, who was not involved in the new work.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Savage, a structural biologist who presented his group’s work last week at the annual Cold Spring Harbor Laboratory CRISPR meeting here, calls the protein engineering method Minimization by Iterative Size-Exclusion Recombination (MISER). The technique uses two enzymes to systematically snip the DNA of the SpCas9 gene, pulling out chunks encoding different parts of the protein. Savage and colleagues then test those genetic sequences to see whether their resultant proteins still retain Cas9’s ability to bind to DNA targets. They then combine the ones that succeed, to add to the unique truncated options. So far, they have made half a million variants. “Shockingly, it works really well,” Savage says. “I didn’t expect it to be so flexible that it could tolerate enormous deletions and those could be stacked together.”The MISER mutants won’t necessarily be able do everything that the typical CRISPR-Cas9 system can. One handicap is that some of the mutant Cas9s can lock onto an exact spot in the genome but cannot cut the DNA. But researchers earlier found that these “dead” Cas9s are handy tools, too, as they can ferry other molecules to specific destinations; one particularly powerful CRISPR technology called base editing exploits this to shuttle an enzyme to a target site that can convert one DNA base into another. The smallest MISER Cas9 mutant created to date—which can’t cut—has only 880 amino acids, about two-thirds the size of the original SpCas9.Harvard University chemist David Liu, whose lab invented the base editor system, says Savage’s work with MISER is an “an outstanding early application of this exciting new method—and moves the genome editing field closer to a long-standing goal.”Many investigators using CRISPR to design biomedical treatments package the genes for Cas9 and its other component inside a harmless virus that can shuttle them to specific cells to repair genetic defects. But the viruses have a limit to how much genetic cargo they can carry, and that’s where the skinny Cas9 could help tremendously—especially if its scissors work. “We have to finish this story,” says Savage, whose team is now sifting through its creations to find out which ones get the biggest bang for the smallest size.last_img read more

skxowwxh

first_img Does a new genetic analysis finally reveal the identity of Jack the Ripper? By David AdamMar. 15, 2019 , 2:00 PM Forensic scientists say they have finally fingered the identity of Jack the Ripper, the notorious serial killer who terrorized the streets of London more than a century ago. Genetic tests published this week point to Aaron Kosminski, a 23-year-old Polish barber and a prime police suspect at the time. But critics say the evidence isn’t strong enough to declare this case closed.The results come from a forensic examination of a stained silk shawl that investigators said was found next to the mutilated body of Catherine Eddowes, the killer’s fourth victim, in 1888. The shawl is speckled with what is claimed to be blood and semen, the latter believed to be from the killer. Four other women in London were also murdered in a 3-month spree and the culprit has never been confirmed.This isn’t the first time Kosminski has been linked to the crimes. But it is the first time the supporting DNA evidence has been published in a peer-reviewed journal. The first genetic tests on shawl samples were conducted several years ago by Jari Louhelainen, a biochemist at Liverpool John Moores University in the United Kingdom, but he said he wanted to wait for the fuss to die down before he submitted the results. Author Russell Edwards, who bought the shawl in 2007 and gave it to Louhelainen, used the unpublished results of the tests to identify Kosminski as the murderer in a 2014 book called Naming Jack the Ripper. But geneticists complained at the time that it was impossible to assess the claims because few technical details about the analysis of genetic samples from the shawl were available.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)The new paper lays those out, up to a point. In what Louhelainen and his colleague David Miller, a reproduction and sperm expert at the University of Leeds in the United Kingdom, claim is “the most systematic and most advanced genetic analysis to date regarding the Jack the Ripper murders,” they describe extracting and amplifying the DNA from the shawl. The tests compared fragments of mitochondrial DNA—the portion of DNA inherited only from one’s mother—retrieved from the shawl with samples taken from living descendants of Eddowes and Kosminski. The DNA matches that of a living relative of Kosminki, they conclude in the Journal of Forensic Sciences.The analysis also suggests the killer had brown hair and brown eyes, which agrees with the evidence from an eyewitness. “These characteristics are surely not unique,” the authors admit in their paper. But blue eyes are now more common than brown in England, the researchers note.The results are unlikely to satisfy critics. Key details on the specific genetic variants identified and compared between DNA samples are not included in the paper. Instead, the authors represent them in a graphic with a series of colored boxes. Where the boxes overlap, they say, the shawl and modern DNA sequences matched.The authors say in their paper that the Data Protection Act, a U.K. law designed to protect the privacy of individuals, stops them from publishing the genetic sequences of the living relatives of Eddowes and Kosminski. The graphic in the paper, they say, is easier for nonscientists to understand, especially “those interested in true crime.”Walther Parson, a forensic scientist at the Institute of Legal Medicine at Innsbruck Medical University in Austria, says mitochondrial DNA sequences pose no risk to privacy and the authors should have included them in the paper. “Otherwise the reader cannot judge the result. I wonder where science and research are going when we start to avoid showing results but instead present colored boxes.”Hansi Weissensteiner, an expert in mitochondrial DNA also at Innsbruck, also takes issue with the mitochondrial DNA analysis, which he says can only reliably show that people—or two DNA samples—are not related. “Based on mitochondrial DNA one can only exclude a suspect.” In other words, the mitochondrial DNA from the shawl could be from Kosminski, but it could probably also have come from thousands who lived in London at the time.Other critics of the Kosminsky theory have pointed out that there’s no evidence the shawl was ever at the crime scene. It also could have become contaminated over the years, they say.The new tests are not the first attempt to identify Jack the Ripper from DNA. Several years ago, U.S. crime author Patricia Cornwell asked other scientists to analyze any DNA in samples taken from letters supposedly sent by the serial killer to police. Based on that DNA analysis and other clues she said the killer was the painter Walter Sickert, though many experts believe those letters to be fake. Another genetic analysis of the letters claimed the murderer could have been a woman. Chronicle/Alamy Stock Photo A historical image of police discovering a Jack the Ripper murder victimlast_img read more

jvtbbmru

first_imgNASA/MIT/TESS When scientists go looking for life on distant exoplanets, they generally focus on rocky worlds the size of Earth. But most of these so-called super-Earths orbit, not yellow dwarfs like our sun, but red dwarfs—which are less than 60% the sun’s size. Now, astronomers report that such exoplanets might not be the best places for harboring life for one key reason: They seem to lack habitable atmospheres.Red dwarfs are by far the most common stars in the Milky Way, but their planets may have a hard time holding onto an atmosphere, in part because these somewhat erratic stars subject them to powerful blasts of radiation.Assessing whether such planets have atmospheres is difficult because they are light-years away from Earth—and their light gets lost in the glare of their stars. So one team of astronomers used data from 100 hours of observations by NASA’s Spitzer Space Telescope, which focuses on infrared light, to study LHS 3844b, a nearby exoplanet which is 1.3 times Earth’s diameter.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)LHS 3844b (artist’s rendition, above) was one of the first planets discovered by NASA’s Transiting Exoplanet Survey Satellite following its launch in April 2018. At 50 light-years away, LHS 3844b is one of the closest exoplanets to Earth and it also has one of the fastest orbits—11 hours.The team measured the brightness of the star-planet system as LHS 3844b moved around its orbit. From that, they could calculate the brightness of the planet—and hence its temperature. If LHS 3844b had an atmosphere, weather systems would transport heat around the planet and even out the distribution of temperature. But the team found that the planet is blisteringly hot directly under the noonday sun and close to absolute zero at midnight, suggesting little or no atmosphere spreading the heat, they report in Nature today.This is just a single planet, but the results suggest finding a hospitable planet around a red dwarf may not be as easy as astronomers had hoped. This rocky ‘super-Earth’ may be a hard place for life to get a footholdcenter_img By Daniel CleryAug. 19, 2019 , 12:00 PMlast_img read more

skxowwxh

first_img Watch Serie A live in the UK on Premier Sports for just £11.99 per month including live LaLiga, Eredivisie, Scottish Cup Football and more. Visit: https://subscribe.premiersports.tv/ Gian Piero Gasperini acknowledges Atalanta “have never given off the idea we were a solid, defensive team” and must do better against Udinese. It kicks off on Sunday at 14.00 GMT, click here for a match preview. “There’s no respite for us this season, it’s one after the other and all tough games,” said the coach in his press conference. “We’ve got Simon Kjaer and Jose Luis Palomino back, but have perhaps lost Andrea Masiello to injury, but it would only be for a few days. “Clearly, it’s not easy for these players every three days, especially as they are not accustomed to this type of schedule.” The Orobici are fresh from a 5-1 drubbing in the Champions League against Manchester City, leaving them bottom of their group without a single point, even if the performances have not been as bad as the results would suggest. “It’s a growth process and we believe that with seven points, we can still take at least third place in the group. We’ll play with all our ferocity. “Evidently, compliments from Pep Guardiola for our style of football are nice, but the result remains very heavy. We know that we’ve never been that good at defending, as we’re better going forward, but we could’ve held out for much longer in Manchester. “The same thing happened against Sassuolo, then last week Lazio, we have never given off the idea that we were a solid, defensive team. We create chances too and score plenty of goals, but we must all give more and should’ve scored at least another in Manchester.” Duvan Zapata is still out of action, but Luis Muriel was initially left on the bench against Manchester City, with Josip Ilicic as a False 9. “Muriel is showing signs of improvement and is an extraordinary finisher who in my view needs to be in the penalty area. It’s not good having few options upfront, we’ll see who of Ilicic and Ruslan Malinovskyi will start. “I do expect more from Ilicic, as he needs to find his form.”last_img read more